
Arie Shoshani – June 2001

SRMSRM
Design ConsiderationsDesign Considerations

ArieArie ShoshaniShoshani
Alex SimAlex Sim

Junmin GuJunmin Gu
Andreas MuellerAndreas Mueller

Scientific Data Management GroupScientific Data Management Group
Computing Science DirectorateComputing Science Directorate

Lawrence Berkeley National LaboratoryLawrence Berkeley National Laboratory
June, 2001June, 2001

Arie Shoshani – June 2001

Outline

• Design Issues
— Support clients directly? Or only through other agents (e.g.

Request Manager)
— Should SRMs get files if not in local cache?
— Support push/pull?
— Treat read/write separately?
— Support a unified interface to DRM/HRM?

• Policies
— Support for permanent / durable/ volatile files
— Pinning level
— User priorities
— Run entire “job” (multiple file requests)
— Notify RepCat of “volatile” staging? Support dynamic inquiry?

• Problems
— How to control “overflow” writes?
— How to make SRM robust (recover after crash)?
— Pin-lock avoidance

Arie Shoshani – June 2001

Request Manager and SRMs

Request
Executer

Event-file
index

Replica
catalog

Network
Weather
Service

Logical
query

File
transfer
requests

GRID

DRM

Disk
Cache

clientclient ...

Request
Interpreter

Matchmaking
Service

HRM DRM

tape system
Disk

Cache

Arie Shoshani – June 2001

Communication with
and between SRMs

HRM

Request
Executer

DRM

Event-file
index

Replica
catalog

Network
Weather
Service

Logical
query

File
transfer
requests

GRID

DRM

Disk
Cache

clientclient ...

Request
Interpreter

Matchmaking
Service

tape system
Disk

Cache

Arie Shoshani – June 2001

Three scenarios that SRMs
should be able to support

• A client communicates directly with DRM/HRM
— No way to call client back
— May ask for a local / remote file

• An agent calls DRM on behalf of a client
— E.g. Request executer
— It is possible to call agent back
— May ask for local / remote file

• A DRM calls another DRM (or HRM)
— As a result of a request for a remote file
— To request a file

Arie Shoshani – June 2001

Should SRMs support clients
directly?

• Yes, because:
— Clients should be able to communicate directly to an

SRM, not requiring special agents (such as ReqMgr)
— e.g. running a simulation, writing to a DRM
— e.g. running analysis, client knows files it wants

• Implications
— Need to support “no_call_back” capability
— i.e. support “status”
— Client unreliable

• Does not provide “release”
• Does not provide “abort”

— Therefore, need “time-out” mechanism support
— Comment: “time-out” needed for all unreliable

behavior, such a network crashes

Arie Shoshani – June 2001

Should SRMs get files if not in local
cache?

• Yes, because:
— Clients can communicate directly to an SRM
— Does not require the architecture to have special

agents (e.g. direct HRM-HRM replica support)
— Allows DRM/HRMs to communicate directly with other

DRM/HRM
• Implications

— Provide logical_file_name + source URL for get/put
— SRM returns local file URL
— Support “call_back” and “status” (for simple clients)

• Benefit
— Can design HRM as “DRM+TRM”

Arie Shoshani – June 2001

Should SRMs support push/pull?

• “Normal” behavior
— Get/pull, Put/push

• Problem
— unreliable behavior

• Put/push gives “file size”, space allocated
… writes more than “file size”

• Get/pull is given “file size”, space allocated
… gets more than “file size”

— How to detect?
• Pull not a problem – can monitor transfer

(policy: abort / get more space)
• Push is a problem

• But, push is needed by clients “writes”
• Decision: support both “modes”

— Get/push useful for HRM = DRM+TRM

Arie Shoshani – June 2001

Treat read/write separately?

• Supprting “writes”
— DRM: make space, perform pull/push
— HRM: same as DRM + schedule put into tape

• Considerations
— Separate queue for read and write
— Separate space allocation for read and write

• Conclusion: no separation
— No advantage to separate treatment
— More complicated to implement
— Priorities for write/read – a matter of policy

Arie Shoshani – June 2001

Support a unified interface to
DRM/HRM?

• Yes, because:
— Access to SRMs uniform
— Simpler to implement
— Staging performed “behind the scenes”
— To the requester only the latency matters

• HRMs can have a latency because of tape transfer
and queues

• DRMs can also have a latency - getting a file from
another site (network transfer latency)

• Benefits
— More uniform design
— Clients communicate with DRMs and HRMs the same
— DRMs + HRMs communicate uniformly
— DRM can be used directly in HRM implementation

Arie Shoshani – June 2001

Interface Functionality

• Want to get a file
— Request_to_get (push/pull)
— Release
— Abort
— Status
— Call_back (when file is available)

• Want to put a file
— Request_to_put (push/pull)
— Release
— Abort
— Status
— Call_back_1 (when file is transferred to disk)
— Call_back_2 (when file is transferred to tape – for HRM)

	Outline
	Request Manager and SRMs
	Communication withand between SRMs
	Three scenarios that SRMsshould be able to support
	Should SRMs support clients directly?
	Should SRMs get files if not in local cache?
	Should SRMs support push/pull?
	Treat read/write separately?
	Support a unified interface to DRM/HRM?
	Interface Functionality

